If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10=-16x^2+64x
We move all terms to the left:
10-(-16x^2+64x)=0
We get rid of parentheses
16x^2-64x+10=0
a = 16; b = -64; c = +10;
Δ = b2-4ac
Δ = -642-4·16·10
Δ = 3456
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3456}=\sqrt{576*6}=\sqrt{576}*\sqrt{6}=24\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-64)-24\sqrt{6}}{2*16}=\frac{64-24\sqrt{6}}{32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-64)+24\sqrt{6}}{2*16}=\frac{64+24\sqrt{6}}{32} $
| 7x-2x-8=-3x+12+44 | | 1x+2x-5-5x=7 | | -9+2x=-3x+57 | | 4.8/y=6 | | 1a÷3+7=9 | | -104-5x=99-12x | | (x+2)/x=(x-1)/(x+3) | | 3x-1+x=3x+17-2x | | 6,5-x+2=4-0,5x-2,5x | | X+5=3x+13*2 | | 4x-1x+4=-20 | | 3+4x=28-x | | x+3,5-0,5x=6-0,5x+1,5 | | 1⁄2(5x+7)=3⁄4(3x-1) | | 10=4x–22 | | 10w+30=70 | | 3(x+4)+2=2-x | | -4g=-20 | | 8+–4p=20 | | 8•x=64 | | 5x-7-2x=10+3x-3 | | -2(5n+1=6 | | 5(3y+4)=10y+30 | | 3b-4=b-12 | | 25^2x-1×5^3x=125^4x-3 | | 4+2m=22 | | 10-2/6y=14 | | 2x+2(x/3)=48 | | 9t=1/3+27/6 | | v+5v1/2−6=0 | | 2(5t+36)=96 | | -20=m/17 |